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Results are g iven  for the ca l cu l a t i on  of ve loc i ty  and pressure f ields 

for the flow of viscous incompress ib le  f luid in a f i a t  channe l  when 

there is a shock v e l o c i t y  prof i le  at  the ent rance  sect ion.  

w S ta tement  of the problem.  Consider the steady flow of a 
viscous incompress ib le  f luid in a f la t  gap  at the ent rance sect ion.  

Let the x -ax i s  l i e  in the d i rec t ion  of flew, and l e t  the y - ax i s  be 

perpendicular  to the planes bounding the flow. The or igin l ies  in the 

entrance sect ion on one of the pla tes  (Fig.  1). The long i tud ina l  and 

transverse ve loc i ty  components  and the pressure wi l l  be denoted by the 

symbols u, v, and p, respec t ive ly .  We now introduce the dimensionless  

var iab les  

x y u, _UU 
x" b ' Y ' - -  b ' - -  u o ' 

v p uob 
v ' =  u-~-' n =  pUo~ , R - -  'v  (1.1) 

Here b is the channe l  ha l f -wid th ,  u 0 is some v e l o c i t y  scale,  and 
p is the f luid densi ty .  The i n i t i a l  equat ions for the flow of a viscous 
incompress ible  fluid in a f l a t  gap then assume the form (the pr imes 

are now omi t t ed  from the dimensionless  var iab les )  

u Ou/Ox + v O u / O y ~  - -  OrffOx -~- R - ~ A u ,  (1 .2)  

u Ov/Ox .-~ v OvlOy---- --OalOy -}- R - ~ A v ,  (1.3) 

Ou/Ox + Ov/Oy -~ 0 .  (1.4) 

For s impl i c i ty  we consider flow which is symmet r i c  r e l a t ive  to the 
midp lane  of the channel ,  i .e . ,  we take  the p lane  y = 1 as the upper 

boundary of the f low. 

The ve loc i ty  component  u is assumed to have  an arbi trary profi le  

at the channel  entrance,  whi le  the condi t ion  for the ve loc i ty  c o m -  
ponent  is not rigid, name ly  

u = l~ (Y), Ov/Ox-~- O. (1.5)  

We now set  the fol lowing condi t ions at  a d is tance  L from the 

ent rance  sect ion:  

u = ]2 (Y), 0 v / O * =  0 . (1.6) 

At the channe l  wa l l  (y = 0) the condit ions 

u = v = 0 (1.7) 

are na tura l ly  satisfied, whi le  a t  the upper boundary (y = 1) 

au/Oy = 0, v = 0 .  (1.8) 

Equations (1.2)-(1.4) ,  together  with boundary condi t ions ( 1 . 5 ) -  
(1.8), are a closed system which enables  us to find the three var iab les  

u, v, and ~r: the pressure ~r is found to within an arbitrary constant .  

w Method for solut ion of the problem.  We now transform our 
system of equat ions in the fol lowing manner .  To e l i m i n a t e  the pres-  

sure ~r from it we di f ferent ia te  Eq. (1.2) with respect  to y and Eq. (1.3) 

with respect  to x, and we subtract  the first result  from the second. 
We obtain 

u O~/Ox+ v OP. /Oy--B ~ A O =  0, 

= Ov/~x - -  Ou/Oy. (2.1) 

We now introduce the s t ream function r y), which is an in tegra l  
of Eq. (1.4) 

u = - -O, /uy ,  v = 0r / Ox . (2.2) 

Substi tut ing (2.2) into (2.1), we obta in  for the required funct ion ~b 

a fourth-order equat ion,  equ iva l en t  to the i n i t i a l  system (1 .2 ) . (1 .4 )  

i 0,p 0~p  &p o a r  
1/ ~ ( A * ) -  Oy oz q- oz Oy = 0 .  (2.3) 

The boundary condi t ions  for the funct ion ~9 in the region under 

cons idera t ion  are obta ined from the boundary condi t ions  for u and v 

Fig. 1 

(1 .5 ) - (1 .8 )  and from rela t ions  (2.2):  

- - - - / / l ( y ) ,  0 ~ o / / 0 x  2 = 0  for x = 0 ,  (2.4) 

~---H2(y), Ou~/Ox 2 ~  0 for x~- - -L ,  (2.5) 

~ - - - 0 ,  O~o]Oy--~O for y-----0, (2.6) 

~2"~" c, 02tp / Oy 2 = 0 for y ~  t ,  (2.7) 

~/ !2 

O 0 

c = H~ (l) = H2 (l) .  (2.8) 

To solve gq. (2.3) with boundary condi t ions (2 .4 ) - (2 ,7 )  by the 
method  of f in i te  differences,  we introduce a mesh consis t ing of the 

straight  l ines  

x ~ = i  Ax ( i = 0 ,  t , . . . , m q - t ) ,  

Y k ~  k Ay ( k ~  0, t , . . . ,  n - ] -  t ) ,  

in the region 0 < x < L, 0 < y <  1, whi le  for s imp l i c i t y  we take  

Ax = Ay = h t empora r i ly .  
However,  before passing to f in i te  differences in Eq. (2.3), we 

rep lace  this fourth-order  equa t ion  by the fol lowing system of two 

second-order  equations:  

- -h- a n  + ~-a7 + ~-Ny = o, A , = a ,  (2.9) 

where u and v are de t e rmined  from (2.2).  The boundary condit ions 
for the funct ion {) a t e  obta ined from Eq. (2.9.2) and condit ions ( 2 . 4 ) -  

(2 .% 
We now pass to f in i te  differences in Eqs. (2.9), using the approxi-  

mat ions  

(A(P)I, k = (q?i--l, k -U (Pi+l, ~ -F (Pi, k--1 ~-  (Pi, k ,  1 - - 4 ( P i ,  k ) h - 2 '  (2.10) 

{(Qi, k - - a i _ l , k ) [ u i ,  t;]/h,  i f  ui, k>~O 

( u @ ) i , ~ :  ( f~i ,~__~i+l ,k)[ui ,~l /h ,  if  U 4 k < 0 '  

0y /i, ;: ( (Qi, t~ - -  ~i, t~21) [ v~. I: I / h, i f  vi, 7~ < 0" 

ui, ~ = - -  (~i, k~t - -  ~i. ~-1) / 2h. 

ri ,  ~ = (~P~ 1, ~: - -  ~Pi-1, ~:) / 2h. (2.11) 

Approximat ing  the der iva t ives  8f_)/Ox and 0f_)/0y with un i l a t e ra l  

differences (and not with cen t ra l  differences),  we a im  first of a l l  
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to obtain a numerical  system that is stable for calculation (with a 
resulting loss of accuracy). 
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Fig. 2 

When we use expressions (2.10) and (2.11), the difference equa-  
tions for a i ,k  and ~i,k, the approximating equations (2.9) are written 
in the following form at the inner points of the mesh: * 

t _ ( _ _ ~ _  + I uL ~ ̀  - u~, '~ ) 
2 ~i+~, ~ - -  

1 Iv~,~l + ~ , ~ \  

-- ~ 2 f~,rr + 

+ ( ~ - ~  + I u,,~ I + I v,,~ I ) ~,,~ = 0, 

- -  ~ i -1 ,  k - -  lPi4-1, U - -  lPi, k--1 - -  ~ i ,  k+l ~-  4~ [ ,  k = - -  h2~i,  R 

( i = t ,  2 , . . . , m ;  k = l ,  2 , . . . , n ) .  

(2.12) 

(2.1a) 

We now write the boundary conditions for the system of functions 
f~i,k and Oi,k. Conditions (2.4) and (2.5) lead to the following 
conditions at the entrance and exit of the channel:  

~o,~ = a~ (yt) ,  

~.~+~,~ = G: (y~), 

Cl (y) = 02H1 (y) / Oy 2, 

apm+x, ~ = 11~ (t&) , 

6~ (y) = 02H2 (y) / Oy ~ . (2.14) 

At the boundary y = 0, in accordance with the two conditions 
(2.6) we have 

~i ,  o = ( 0 ~  ] OY2)i.O = (8~i ,1  - -  ~i ,2)  ] 2h2, ~Pi,o = O. 

Furthermore, @i,t is expressed in terms of ~i,~ by means of 
Eq. (2.13). As a result, the conditions for the functions f~ and ~P at 
the boundary y = 0 are written in the form 

~i,O = - -  f l i , l  + ( ~ i _ l , l  -~ ~ i + l , l  -~ O.51Pi,2) h -2  , ~i ,0  = 0 .  (2.15) 

where 

+ p~,~r = Fi, ~ -  h~O,,~ 
( i = 1 , 2  . . . . .  m; k = l , 2  . . . . .  n), 

al,  ~ ~ era, ~ = bi, 1 = di ,  n ~ O ,  

a ,  % d  = b,,; = = o.  

(2.18) 

On the right-hand side of Eq. (2.17) the term gi,k(~), which 
originates in connection with condition (2.15), is nonzero only on 
the line k = 1, namely 

I bi' 1 (~i-1,1 -~- r -}- 0.5r h -~ for k = t , (r & k 
' [ 0 for k =/= 1, 

bL~ = 1 / t lh  + 112 (I v~,k] + v~a), 

ff Eq. (2.12) has not been previously multiplied. 
We now rewrite the system of equations (2.17)-(2.18) in the 

following form: 

- -  ai ,k  ~ i - l , t ;  - -  Ci ,k~i+l ,k  - -  b i& ~ t , k - 1  - -  di ,k  ~ i , k + l  ~-  

+ Pi,~ (t + L) g~i,~ = Fi,~ + gi,~ (ap) + Lpi,~ (Aqp)i,k , (2.19) 

+ P i , ; r  = F i , ;  - -  h2ni,~ " (2.20) 

The parameter k appearing in Eq. (2.19) plays the same part 
qualitatively as the parameter 1 / r  (v is the length of the t ime step) 
in the solution of problem (2.9) by another method. 

We now split each of Eqs. (2.19) and (2.20) into two first-order 
difference equations (see [2]), adding the binomial 

B i , k  = r i , ~ i - 1 ,  k+l  ~-  s i , k ~ i + I ,  k-1 

to the right- and left-hand sides of Eq. (2.19). The coefficients 
ri, k and si, k of this binomial  are as yet undetermined. 
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Fig. 3 

The system of equations 

At the boundary y = 1, in accordance with conditions (2.7), 

~di,n§ 1 = O, l~i,n+l ~ C. (2.16) 

After Using the boundary conditions (2.14)-(2.16) in Eqs. (2.12) 
and (2.13), we obtain a system of algebraic equations for the unknowns 
Oi, k and ~i,k of the form 

- -  a i , k f l i _ l ,  k - -  Ci,k Qi+I,  k - -  b i , k~ i , k_  t - -  di ,k~i , l f+l  -J- 

+ Pi,kff$i,k = F i , k  ~-  gi ,k  ( ~ ) ,  (2.17) 

Zi& = Ti,k (a i ,kZi - l ,k  + bi,lcZi,k-1 -}- Fi ,k  + gi,k (lp) -]- 

~- ~'Pi,k (AlP)i,k) "~- Ti,k (r i ,k~i - l ,k+l  -~ Si,k ~i+l,k-1) ' (2.21) 

~2i,~ = Ti,~ (ci,k~i+13~ i -  di,kf~i.~l) + Zi&, (2.22) 

Ti,~ = [(i + ~) Pi,~ - -  ai .kCi-LkTi-l ,~ - -  bi,kdi,lc-lTi,k-1] -x 

is equivalent to Eq. (2.19) if the coefficients ri, k and si, k appearing 
in the expression for Bi, k are taken as equal to 

ri,tr ~ a i ,kd i_ l ,k"( i_ l ,k ,  si,k ~ bi ,kci ,k_l"gi ,k_ 1 . 

*The transition to finite differences in Eq. (2.9.1) can be performed 
by more refined methods. The authors also used Allen's method, 
explained in [1]. 

Similarly, Eq. (2.20) is replaced by the equivalent system 

w~ ~=~i ; (a~.~W~_l ~ + E ~w~ ~_I + • h-%a) + 
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+ Y~,s (.~,s ~+t+~,~.~+~, ~-i), (2.23) 

* ~  = ~,~ (%~%r ~ + ~,~*~,~.~) + w ~  : 

~s  = <~; - %;'~-, ;~,-d - ~d~, ~-;~ ~ ; ) 1  (2.24) 

Since the systems of equations (2.21), (2.22) and (2.23), (2.24) are 
inseparable, namely the coefficients of Eqs. (2.21) and (2.22) and the 

terms Fi, k + gi,k(r + XPi,k(Ar k depend on the field of the func- 
tion ~0, we solve both systems of equations together by the method 
of successive approximations. 

Taking the field of the function r in the zeroth approximation, 

we calculate the coefficients ai,k, bi,k, Ci,k, di,k, and Yi,k and the 
quantities Fi,k, gi,k(@), ypi,k(Ar entering into Eqs. (2.21) and 

(2.22), and we solve the system of equations (2.21) and (2.22) by 
iterations. The system of equations (2.23) and (2.24) is then solved 

(also by iteration). Next, the coefficients ai,k, bi,k, Ci,k, di,k, and 
Yi,k of Eqs. (2.21) and (2.22) are determined more accurately, as well 

as the right-hand side Fi, k + gi,k(~b) + kPi,k(Ar of Eq. (2.21), and 

system (2.21) and (2.22) is solved once more. Then system (2.23) 
and (2.24) is solved, and so on. 
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Fig. 4 

The iteration process for the whole four-equation system (2.21)- 
(2.24) is discontinued when the difference between successive approx- 

imations for the field of the function r becomes less than a given 
small quantity e. 

We finally obtain the velocity field of u and v in the channel in 
the form of functions of the coordinates. 

The pressure field can be obtained by integration of gqs. (1.2) and 
(1.3) directly along the coordinate lines. In this way the pressure is 
determined at one point of the region under consideration. 

w Results of the calculations. Problem (1.2)-(1.8) was specifi- 
cally solved with the following boundary conditions for the velocity 
components u and v at x = 0 and x = L: 

u = l ,  O v / O x = O  at z = 0 ,  (3.1) 

u = 3  y(t--~/2y),  O v / O z = O  at x =  L.  (3.2) 

Condition (3.2) is taken from the solution of the steady-state 
problem (1.2)-(1.4) for flow in a channel of infinite extent. 

The solution of gqs. (2.21)-(2.24) was programmed on an elec- 
tronic computer. 

Attempts to solve this system showed, first of all, that for X = 0 
the iterative process (2.21)-(2.24) can diverge. 

The optimum values of X for which the iterative process (2.21)- 
(2.24) converges most rapidly are found in the interval 0 < X < 0.5. 

Analysis of the iterative process (2.21)-(2.24) performed enables 

us to conclude that the iterative terms ri,k~i_l,k+l + Si,kf~i+l,k_l 
on the right-hand side of Eq. (2.21) are very far from being the main 
part of the right-hand side of this equation. Thus, these terms can be 
iterated only a few times in the system (2.21) and (2.22). The same 

can be said of the terms r~,kr 1 + S[,kr i in Eq. (2.23). 
For a number of mesh calculation points mn ~ 400 and X = 0.1- 

0.2 the following method of iteration is appropriate: Z and f~ were 

calculated five times in the process (2.21) and (2.22), and W and r 
were at least once in the process (2.23) and (2.24). Then, to obtain 
the field of r to within three or four figures, the required number of 
iterations between Eqs. (2.21), (2.22) and (2.23), (2.24) (i.e., the 
number of external iterations) does not exceed 20-30. 
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Fig. 5 

To obtain a more detailed picture of the fluid flow close to the 
entrance section and near the channel wall, a mesh with a nonuniform 
step Ax and Ay was used. This was accomplished by introducing into 
Eq. (2.9) (before making the transition to finite differences) the new 
independent variables 

~ =  In ( t + x / 6 i ) ,  v =  In ( t + y / 6 ~ ) ,  (3.3) 

in place of the variableS x and y, and in which 61 and 52 are some 
"scale sizes" of the phenomena close to the boundaries x = 0 and 
y = O .  

When (3.31 is taken into account, Eqs. (2.9} can he rewritten 
in the form 

i Or On i 0r 
( 6 z + x ) ( S z + y )  Ov O~ ~ (~ iq -x ) (6~+Y)  OV X 

0n t I I 0 (  l 0 ~ )  t 0 

x 1 Oa~l 0 ( N - ~  -g-] j  = 

, 0(  , 0,) , o (  , 0,)  
6r q- z O~ "61+ x O~ -~ 62 -~- Y Ov "~2 + y Ov = ~~ (3.4) 

For uniform step lengths of the coordinate mesh in the variables 
p and v, the intervals between calculation points on the linear scale 
are given by the formulas 

(Az) i ~ (6r § z 0 A~, (Ay) k ~ (62 + y~) a v .  

Results of the calculations of velocity and pressure fields in the 
entrance section of a flat gap for various values of the numbers R are 
given in Figs. 2-6.  

As an example, Fig. 2 shows the calculated profiles of the longi- 
tudinal velocity component u at various channel sections for R = 500. 
CurveS 1-6 in this figure refer to the sections x = 0, 1.97, 4.05, t0.9, 
42.4, and 100, respectively. 

'~176 t , /  t ]  

0 t00# R 

Fig. 6 

The calculated profiles of the transverse velocity component v in 
a flow with the same number R = 500 are shown in Fig. 3. Curves 1 -4  
refer to the sections x = 1.97, 4.06, 10.9, and 24.8. According to 
Fig. 3, distance of x ~ 2 from the entrance the transverse velocity 
component v reachs a value of 2.5~ of the longitudinal velocity 

component u at the channel entrance. 
The calculated pressure ~r exhibits marked nonuniformity over the 

channel section only at distances from the entrance within the limits 
0 -< x -< 2. In Fig. 4, curves 1 and 2 describe the pressure distribution 
at the sections x = 0.987 and x = 2.02 (the value of ~r is taken as zero 
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at a point with coordinates x = 0.98q, y = 0.022). According to Fig. 4, 
when R = 500 the differential of pressure ~r at the channel section with 
x ~ 1.0 reaches a value of 0.2 at the wall and inside the flow. 

The calculated pressure variation in fluid flow in the direction of 
the channel is shown in Fig. 5 for a distance of y = 0.022 from the 
channel wall for l~ = 500. It follows from Fig. 5 that for such a value 
of R the pressure gradient in fluid flow is stabilized at a distance x 
from the entrance that is on the order of 40. 

The calculated hydrodynamic stabilization length l in a laminar 
fluid flow in a fiat gap is presented in Fig. 6 as a function of the 
number R. Estimates of the length 1 are made by determining the 
velocity u at the channel axis (curve 1) and by determining the shear- 
ing stress r at the channel wall (curve 2). Curve 1 is in satisfactory 
agreement with the results obtained by Leibenzon (see [3]). 

The calculated velocity field is in qualitative agreement with the 
rezults obtained in [1]. 
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