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THE FLOW OF A VISCOUS INCOMPRESSIBLE FLUID AT THE ENTRANCE SECTION OF A FLAT CHANNEL
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Results are given for the calculation of velocity and pressure fields
for the flow of viscous incompressible fluid in a flat channel when
there is a shock velocity profile at the entrance section.

§1. Statement of the problem. Consider the steady flow of a
viscous incompressible fluid in a flat gap at the entrance section,

Let the x-axis lie in the direction of flow, and let the y-axis be
perpendicular to the planes bounding the flow, The origin lies in the
entrance section on one of the plates (Fig. 1). The longitudinal and
transverse velocity components and the pressure will be denoted by the
symbols u, v, and p, respectively. We now introduce the dimensionless
variables
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Here b is the channel half-width, u, is some velocity scale, and
p is the fluid density. The initial equations for the flow of a viscous
incompressible fluid in a flat gap then assume the form (the primes
are now omitted from the dimensionless variables)

w Ouléw + v dufoy = — dnidz + R Au, 1.2)
v 0v/éx 4 v Ov/dy = —on/dy + R™1Av, (1.3)
Oufdx -+ dv/dy = 0. (1.4)

For simplicity we consider flow which is symmetric relative to the
midplane of the channel, i.e., we take the plane y =1 as the upper
boundary of the flow.

The velocity component u is assumed to have an arbitrary profile
at the channel entrance, while the condition for the velocity com-
ponent is not rigid, namely

u=f(y), Ov/or=10. (1.5)

We now set the following conditions at a distance L from the
entrance section:

u= f2(y), vjdx= 0. (1.6)

At the channel wall (y = 0) the conditions
u=v=20 (17)
are naturally satisfied, while at the upper boundary (y = 1)

dulty = 0, v=10, (1.8)

Equations (1.2)—(1.4), together with boundary conditions (1.5)—
(1.8), are a closed systemn which enables us to find the three variables
u, v, and m: the pressure 7 is found to within an arbitrary constant.

§2. Method for solution of the problem. We now transform our
system of equations in the following manner. To eliminate the pres-
sure m from it we differentiate Eq. (1.2) with respect to y and Eq. (1.3)
with respect to x, and we subtract the first result from the second.
We obtain

u 9Qfoz + v 9Qfdy — RIAQ = 0,
Q = dv/dx — duldy . (2.1)

We now introduce the stream function ¢(x, y), which is an integral
of Eq. (1.4)

u = —dploy, v= 0y [0z . (2.2)

Substituting (2.2) into (2.1), we obtain for the required function ¢
a fourth-order equation, equivalent to the initial system (1.2)~(1.4)

1 Iy OAY op AP
_TA(A@_—W P Tz oy =0. (2.3)

The boundary conditions for the function ¢ in the region under
consideration are obtained from the boundary conditions for u and v

(1.5)—(1.8) and from relations (2.2):

Y=Hi(y), 0%/ [022=0 for 2=0, 2.4
V= Hs(y), 0%/oa2=0 for z=1, (2.5)
p=0, M/oy=0 for y=0, (2.6)
v=c, 2 op=0 for y=A1, 2.7)

y y

Hy(y)= —Sfx (y)dy, Ha(y)= "Siz (y)dy,

i} 0

o= Hi(1) = Ha(1). (.8)

To solve Eq.(2.3) with boundary conditions (2.4)~(2.7) by the
method of finite differences, we introduce a mesh consisting of the
straight lines

n=1i Az (i=0,1,..,m+ 1),
ye=k Ay (k= 0,1, n+ 1),

in the region 0 < x < L, 0 < y < 1, while for simplicity we take
Ax = Ay = h temporarily.

However, before passing to finite differences in Eq. (2.3), we
replace this fourth-order equation by the following system of two
second-order equations:
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'—'FAQ+M-6—;-{—7;—6‘TJ—=O, Ap=9Q, (2.9

where 1 and v are determined from (2.2). The boundary conditions
for the function @ are obtained from Ej. (2.9.2) and conditions (2.4)~

(2.7).
We now pass to finite differences in Eqs. (2.9), using the approxi-
mations

(A(p)i_ r= (lPi_L P Pia ke + Pi + Pi a1 — 4%, ;;) h72, (2.10)
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Approximating the derivatrives 00/0x and 0Q/0y with unilateral
differences (and not with central differences), we aim first of all
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to obtain a numerical system that is stable for calculation (with a
resulting loss of accuracy).
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Fig, 2

When we use expressions (2.10) and (2.11), the difference equa-
tions for Qj k and ¥; k, the approximating equations (2.9) are written
in the following form at the inner points of the mesh:*
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1 Iul,klkuhh
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1 lvl,h|+yi,k
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4
+ 7}?+'|“i,k|+|”i,k|>9i,k=0: (2.12)

=ik Vi Vi Vi g FAGLy = — Q4

(=1,2,...mk=1,2,... n. (2.13)

We now write the boundary conditions for the system of functions
Qi k and ¥j k. Conditions (2.4) and (2.5) lead to the following
conditions at the entrance and exit of the channel:

Qu,k =Gy (yk)’ "«po,k =H; (yk),
Vi, x = H2 ),

Ge(y) = 0H: (y) ] By®. (2.14)

Qm+1,k =G (yk)'
Gi(y) = 0% H1(y) [ 0y?,

At the boundary y =0, in accordance with the two conditions
(2.6) we have

gi, 0= (%9 / 3y2)i'0 = (8‘\])1-'1 - 14)1-,2) / 2h?, "*l’i'o =0.

Furthermore, $; ; is expressed in terms of Qj, by means ef
Eq. (2.13). As a result, the conditions for the functions Q and ¢ at
the boundary y = 0 are written in the form

Qo= Q1+ iy 1tV 050 )R ;,=0. (2.15)

At the boundary y = 1, in accordance with conditions (2.7),

Qi,n+1 = O' 'pi.wrl =c- (2'16)

After using the boundary conditions (2.14)—(2.16) in Egs. (2.12)
and (2.13), we obtain a system of algebraic equations for the unknowns
Q] k and ¥j k of the form

— @Ry €k Rk — Pk ko — Tk
+ PixQip = Fiptax(9): (2.17)

*The transition to finite differences in Eq. (2.9.1) can be performed
by more refined methods. The authors also used Allen‘s method,
explained in [1].

=Wk — S Wik — PexVipa — i Vipa +
+ oW = Fie—PQx (2.18)
(i=1,2,....,m; k=1,2,...,n),
where

a3,k == Oy = by g =5, =0,

”» ’ ’
G =Cpp=2"b = d:n =0.

On the right-hand side of Eq. (2.17) the term g; ((#), which
originates in connection with condition (2.15), is nonzero omly on
the line k = 1, namely

bi’; (B;_yy + Vg1 059, )22 for k=1,
0 for k1,
b =1/ R+ (v, ] +2;3),

gi,k(‘l’) =.{

if Eq. (2.12) has not been previously multiplied.,
We now rewrite the system of equations (2.17)—(2.18) in the
following form:
— 1Rk % R e — Bk Yk — B R g
+ (4 A) Q= Fivteix W) + A'Pi.k (A‘l’)i,k R (2.19)
— 8 Wiy — O Vi e — O Pipes — Vi e +
+ Pibip = Fip—hQ - (2.20)
The parameter A appearing in Eq. (2.19) plays the same part
qualitatively as the parameter 1/7 (7 is the length of the time step)
in the solution of problem (2.9) by another method.

We now split each of Egs. (2.19) and (2.20) into two first-order
difference equations (see [2]), adding the binomial

B =7 3R, et xR,k

to the right- and left-hand sides of Eq. (2.19). The coefficients
1j,k and sj k of this binomial are as yet undetermined.
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The system of equations
Zig=Yixg(ixZiax T bixZiga+ Fip+ & (O +
+ Apy g (A) )+ ¥k (P R g pr T 5k Rier k) (2.21)
Qi =Tk CieRnrn T 4 xR ) + Ziy (2.22)
Tix =L+ 8 Pi g — 8 xCigxVicrk — Pkt p-aVip-al?

is equivalent to Eq. (2.19) if the coefficients 1j } and sj x appearing
in the expression for Bj k are taken as equal to

ik = %%k TieL ke 80 = b ki xaYi k1 .

Similarly, Eq. (2.20) is replaced by the equivalent system

W= (@ Wiy 4 05 i + Fipg— P Q) +
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+ Vo (L Bt L i, 1), (2.23)

Vi = Vi o Pisne + Vi) + Wi 5

i = (Pik = %o, kT, n — Piii it Ve et ) (2.24)

ik == 8 ki Vi Sik = Ui,k 11 k1 -

Since the systems of equations (2.21), (2.22) and (2.23), (2.24) are
inseparable, namely the coefficients of Eqs. (2.21) and (2.22) and the
terms Fi,k + gi,k(w) + }‘Pi,k(mb)i,k depend on the field of the func-
tion ¥, we solve both systems of equations together by the method
of successive approximations.

Taking the field of the function ¥j k in the zeroth approximation,
we calculate the coefficients aj %, bj k, ¢i k. di,k and yik and the
quantities Fi,k' gi‘k(w), ypi’k(Azb)i’k entering into Egs. (2.21) and
(2.22), and we solve the system of equations (2.21) and (2.22) by
iterations, The system of equations (2.23) and (2.24) is then solved
(also by iteration). Next, the coefficients a; k, bj k. ¢f k. di k. and
Yik of Egs. (2.21) and (2.22) are determined more accurately, as well
as the right-hand side Fi,k + gi’k(Ib) + Ap; k(Aw)i,k of Eq.(2.21), and
system (2.21) and (2.22) is solved once ;nore. Then system (2,23)
and (2,24) is solved, and so on,
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The iteration process for the whole four-equation system (2.21)—
(2.24) is discontinued when the difference between successive approx-
imations for the field of the function ¥j i becomes less than a given
small quantity €.

We finally obtain the velocity field of u and v in the channel in
the form of functions of the coordinates.

The pressure field can be obtained by integration of Eqs. (1.2) and
(1.3) directly along the coordinate lines. In this way the pressure is
determined at one point of the region under consideration.

§3. Results of the calculations. Problem (1.2)-(1.8) was specifi~
cally solved with the following boundary conditions for the velocity
components nandv at x =0 and x = L:

u=1, dv/dz=0 at z=0, (3.1)

u=3y(1—y), d/0x=0 at z=1. (3.2)

Condition (3.2) is taken from the solution of the steady-state
problem (1.2)~(1.4) for flow in a channel of infinite extent.

The solution of Eqs. (2.21)~(2.24) was programmed on an elec-
tronic computer.

Attempts to solve this system showed, first of all, that for A =0
the iterative process (2.21)~(2.24) can diverge.

The optimum values of X for which the iterative process (2.21)-
(2.24) converges most rapidly are found in the interval 0 < A < 0.5.

Analysis of the iterative process (2.21)~(2.24) performed enables
" us to conclude that the iterative terms ri kxQi-3k+s+ Si,kQi+1,k-1
on the right-hand side of Eq. (2.21) are very far from being the main
part of the right-hand side of this equation. Thus, these terms can be
iterated only a few times in the system (2.21) and (2.22). The same
can be said of the terms rf 1bi-y ke + 5i,kVi+1,k-1 10 Eq. (2.23).

For 2 number of mesh calculation points mn &~ 400 and A =0.1-
0.2 the following method of iteration is appropriate: Z and © were

calculated five times in the process (2.21) and (2.22), and W and ¢

were at least once in the process (2.23) and (2.24). Then, to obtain
the field of ¢ to within three or four figures, the required number of
iterations between Egs. (2.21), (2.22) and (2.23), (2.24) (i.e., the

number of external iterations) does not exceed 20-30.
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To obtain a more detailed picture of the fluid fiow close to the
entrance section and near the channel wall, a mesh with a nonuniform
step Ax and Ay was used, This was accomplished by introducing into
Eq. (2.9) (before making the transition to finite differences) the new
independent variables

p=In (1 -+ z/8), v=1In (14 y/8), (8.3)
in place of the variables x and y, and in which §; and 8 are some
"scale sizes” of the phenomena close to the boundaries x =0 and
y=0.

When (8.3} is taken into account, Egs.(2.9) can be rewritten
in the form

1w "
GraGty) v o BTG TN o

SIS I N3 P N
ov R 6142 dp\b1+= 6u> 8 +y v
i Q
"<62+y?9’v“)]=°'
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8+ O \b; -2 op 6g+y6v<ﬁz+y v

)= Q. (3.4

For uniform step lengths of the coordinate mesh in the variables
4 and v, the intervals between calculation points on the linear scale
are given by the formulas

(Az), = (81 + =,) Ap, (Ay), =~ (St yy) Av.

Results of the calculations of velocity and pressure fields in the
entrance section of a flat gap for various values of the numbers R are
given in Figs, 2-86.

As an example, Fig. 2 shows the calculated profiles of the longi-
tudinal velocity component u at various channel sections for R = 500.
Curves 1-6 in this figure refer to the sections x =0, 1.97, 4.05, 10.9,
42.4, and 100, respectively.
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The calculated profiles of the transverse velocity component v in
a flow with the same number R = 500 are shown in Fig, 3. Curves 1-4
refer to the sections x = 1,97, 4.05, 10,9, and 24.8. According to
Fig. 3, distance of x ® 2 from the entrance the tramsverse velocity
component v reachs a value of 2.5% of the longitudinal velocity
component u at the channel entrance,

The calculated pressure 7 exhibits marked nonuniformity over the
channel section only at distances from the entrance within the limits
0 =x =2, In Fig, 4, curves 1 and 2 describe the pressure distribution
at the sections x = 0,987 and x = 2.02 (the value of w is taken as zero
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at a point with coordinates x = 0,987, y = 0.022), According to Fig. 4, REFERENCES
when R = 500 the differential of pressure w at the channel section with
X ® 1,0 reaches a value of 0,2 at the wall and inside the flow.

The calculated pressure variation in fluid flow in the direction of
the channel is shown in Fig. 5 for a distance of y = 0.022 from the
channel wall for R = 500, It follows from Fig. 5 that for such a value
of R the pressure gradient in fluid flow is stabilized at a distance x
from the entrance that is on the order of 40,

The calculated hydrodynamic stabilization length 7 in a laminar
fluid flow in a flat gap is presented in Fig, 6 as a function of the
number R. Estimates of the length [ are made by determining the
velocity u at the channel axis (curve 1) and by determining the shear-
ing stress 7 at the channel wall (curve 2), Cwrve 1 is in satisfactory
agreement with the results obtained by Leibenzon (see [3]).

The calculated velocity field is in qualitative agreement with the
results obtained in [1]. 4 May 1966 Obninsk
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